Home  Medias & Documents

Maps > Mathematics > Authors

Isoz. Opera Magistris. Compendium of Elementary Applied Mathematics for Engineers. 4e. 2024.

0 Contents
2018 Contents & Chapter 4 Introduction V1 PDF

1 Revision History

2 Warnings

2.1 Impressum
2.1.1 Use of content
2.1.2 How to use this book
 2.1.2.1 Style guide
 2.1.2.2 Credits
 2.1.2.3 Videos and Animations
 2.1.2.4 Ancillaries
2.1.3 Data Protection
2.1.4 Use of data
2.1.5 Data transmission
2.1.6 Agreement
2.1.7 Errata
2.2 License
2.2.1 Preamble
2.2.2 Applicability and Definitions
2.2.3 Verbatim Copying
2.2.4 Copying in Quantity
2.2.5 Modifications
2.2.6 Combining Documents
2.2.7 Collections of Documents
2.2.8 Aggregation with independent Works
2.2.9 Generating this document
2.2.10 Translation
2.2.11 Permissions and Copyrights
2.2.12 Termination
2.2.13 Future revisions of this License
2.3 Roadmap (To Do)

3 Acknowledgements

4 Introduction
Chap 2 & 4 V1 PDF
4.1 Forewords
4.1.1 Motivation and goals
4.1.2 Who this book is intended for
4.1.3 How is this book structured
4.2 Methods
4.2.1 Descartes’ Method
 4.2.1.1 Blind studies
4.2.2 Research Integrity and Engineering/Scientific Ethics
 4.2.2.1 Singapore Statement on Research Integrity
 4.2.2.2 European Code of Conduct for Research Integrity
 4.2.2.3 Archimedean Oath
4.2.3 Scientific Publication Rules (SPR)
4.2.4 Scientific Mainstream Media communication
 4.2.4.1 Social Networks
 4.2.4.2 Expert Opinions
4.3 Vocabulary
4.3.1 On Sciences
4.3.2 Terminology
4.4 Science and Faith
4.4.1 Baloney detection kit
4.5 Scientific communication backfire
4.6 Is Science dogmatic ?

5 Arithmetic

5.1 Proof Theory
V1 PDF
V2 PDF
5.1.1 Foundations Crisis
5.1.2 Paradoxes
5.1.2.1 Hypothetical-Deductive Reasoning
5.1.3 Propositional Calculus
5.1.3.1 Propositions (premises)
5.1.3.2 Connectors
5.1.3.3 Decision procedures
5.1.3.4 Quantifiers
5.1.4 Predicate Calculus
5.1.4.1 Grammar
5.1.4.2 Languages
5.1.5 Proofs
5.1.5.1 Rules of Proofs
5.1.6 Laws of thought
5.1.6.1 Some famous logical fallacies
5.1.6.2 Is logic a science?

5.2 Numbers
V1 PDF
V2 PDF
5.2.1 Digital Bases
5.2.2 Type of Numbers
5.2.2.1 Natural Integer Numbers
5.2.2.2 Relative Integer Numbers
5.2.2.3 Rational Numbers
5.2.2.4 Irrational Numbers
5.2.2.5 Real Numbers
5.2.2.6 Transfinite Numbers
5.2.2.7 Complex Numbers
5.2.2.8 Quaternion Numbers
5.2.2.9 Algebraic and Transcendental Numbers
5.2.2.10 Universe Numbers (normal numbers)
5.2.2.11 Abstract Numbers (variables)

5.3 Arithmetic Operators
V1 PDF
V2 PDF
5.3.1 Binary Relations
5.3.1.1 Equalities
5.3.1.2 Comparators
5.3.2 Fundamental Arithmetic Laws
5.3.2.1 Addition
5.3.2.2 Subtraction
5.3.2.3 Multiplication
5.3.2.4 Division
5.3.2.5 n-root
5.3.3 Arithmetic Polynomials
5.3.4 Absolute Value
5.3.5 Calculation Rules (operators priorities)

5.4 Number Theory
V1 PDF
5.4.1 Principle of good order
5.4.2 Induction Principle
5.4.3 Divisibility
5.4.3.1 Euclidean Division
5.4.3.2 Euclidean Algorithm
5.4.3.3 Least Common Multiple
5.4.3.4 Fundamental Theorem of Arithmetic
5.4.3.5 Congruences (modular arithmetic)
5.4.3.6 Continued fraction

5.5 Set Theory
V1 PDF
5.5.1 Zermelo-Fraenkel Axiomatic
5.5.1.1 Cardinals
5.5.1.2 Cartesian Product
5.5.1.3 Intervals
5.5.2 Set Operations
5.5.2.1 Inclusion
5.5.2.2 Intersection
5.5.2.3 Union
5.5.2.4 Difference
5.5.2.5 Symmetric Difference
5.5.2.6 Product
5.5.2.7 Complementarity
5.5.3 Functions and Applications
5.5.3.1 Cantor-Bernstein Theorem
5.5.4 Structures
5.5.4.1 Magma
5.5.4.2 Monoid
5.5.4.3 Groups
5.5.4.4 Ring
5.5.4.5 Field
5.5.4.6 Vector Spaces
5.5.4.7 C-algebra A
5.5.4.8 Summary
5.5.5 Morphisms
5.5.5.1 Ideal